Home » Tekmovalne naloge » Skupina III. , Vsa poglavja fizike

ASTRONOMIJA

ASTRONOMSKO OPAZOVANJE

 

(dan bo izbran glede na vreme)

Panorama Ptuj (na vrhu)

Informacije: kristina.pajek@guest.arnes.si

*z udeležbo na opazovanju pridobite 2 uri za OIV

 

Termini fizikalnega krožka

SKUPINA I (MEHANIKA) je vsak torek ob 7.10 v učilnici 7

SKUPINA II (TOPLOTA,  ELEKTRIKA ) je vsako drugo sredo ob 7.1o, zaćnemo januarja 2024.   

SKUPINA III (vsa poglavja), po dogovoru

Krožek poteka v učilnici 2.

Informacije na :

viktor.vidovic@guest.arnes.si

 

Skupina III. , Vsa poglavja fizike

Nihanje

1. Valj višine h in gostote ρ plava na vodi. Nekoliko ga potisnemo v vodo in spustimo, da začne nihati. Kolik je njegov nihajni čas t0? Upor vode zanemarimo, podatke lahko poljubno izberemo.

Rešitev :

valja

V ravnovesjem stanju je dno valja na globini X0, tako da je sila vzgona enaka teži valja Fvzg = Fg .

X0 S ρ0 g = ρ S h g ( pri čemer je S osnovna ploskev, ρ0 je gostota vode ) . Iz te enačbe izračunamo koliko je valj sploh potopljen x0 = h ρ / ρ0.

Ko je dno kvadra na globini X > X0, deluje nanj rezultanta med novo silo vzgona in težo v smeri navzgor in daje valju pospešek a.

Fvzg1 + Fg = m a

ρ0 x S g – h ρ S g = m a

( x ρ0 – h ρ ) S g = ρ S h a

a = g (x – x0 ) ρ /(ρ0 h)

Če upoštevamo, da so odmiki valja majhni je nihanje sinusno in velja za amplitudo pospeška a0 = ω02 s0, pri čemer je s0 = x – x0 in a = a0 . Ker vemo, da je ω0 = 2¶ / t0 je nato t0 = 2 ¶ (h ρ /(ρ0 g))1/2

Štefanov zakon

1. Volframska nitka v žarnici je segreta na temperaturo T0= 2700 K . Žarnico ugasnemo. Po kolikšnem času t1 se temperatura nitke zmanjša na T1=600 K? Nitka ima polmer r=0,05 mmin seva z emisivnostjo ε=0,3. Gostota volframa je 19,3 g/cm3, specifična toplota pa 155,4 J/kgK.

Rešitev :

Nitko si predstavljamo kot valj ki seva . Po času t je temperatura nitke T. V naslednjem kratkem časovnem intervalu dt nitka odda toploto

dQ = P dt = SεσT4 dt = 2¶ r b ε σ T4 dt, .

Po drugi strani velja dQ = P dt = – mcp dT , pri čemer je b dolžina nitke, dT pa je zmanjšanje temperature.

Dobimo posebno enačbo, ki ji pravimo diferencialno enačbo, kjer moramo le ločiti spremenljivke in na vsaki strani integriramo.

dT / T4 = – 2 ε σ /( r ρ cp ) dt . Pri t=0 je T=T0 po času t je temperatura T1.

Rešitev je

1/(3T13 – 1/(3T03) = α t1 , kjer je α=2εσ/(r ρ cp ) in ko vstavimo podatke dobimo ta t1 = 1/(3α) ( T1-3 – T0-3 ) = 6,6 s.

OPTIKA

2. Vzporedni snop svetlobe valovne dolžine λ=480 nm pada na prozorno ploščico debeline d=1 μm. Lomni količnik ploščice je n=1,6. Kolikšen vpadni kot α glede na vpadno pravokotnico morajo imeti žarki , da se odbita svetloba ojači? Ploščica leži na stekleni plošči , ki ima lomni količnik n1=1,5.

Rešitev :

optika_1
Žarek 1 se odbije na zgornji oloskvi ploščice, pri čemer se mu spremeni faza za ¶ oz. Žarek 2 se odbije na spodnji ploskvi. Njegova faza se ne spremeni saj je n>n1 . Odbiti žarek 2 napravi daljšo optično potkot žarek 1. to pot izračunamo iz lomnega zakona sin(α) / sin(β) = n/1 , V imenovalcu je lomni količnik za zrak približno enak 1. S kotnimi funkcijami in debelino d izračunam pot žarka 2, ki potuje skozi rumeno ploščico.

cos (β) = d/s s = d cos(β)

upoštevamo zvezo sin2(β) + cos2(β) = 1 . Tako je

sin2(β) = 1 – cos2) = 1 – d2 / s2 iz česar dobimo, da je

s2 = d2 / (1 – sin2(β)) . Ko vstavimo še iz lomnega zakona za sin(β) = sin(σ) / n, dobimo izraz za s2 = d2 n2 / (n2 – sin2(α))

Upoštevati moramo, da žarek 2 preputuje 2 s je končna pot

enaka 2 s = 2 d n / (n2 – sin2(α))1/2 . Zdaj pa upoštevajmo znani pogoj za interferenco med žarkoma 1 in 2. Razlika poti dveh valovanj mora biti celi večkratnik valovne dolžine Δ = N λ, pri čemer je N=1,2,3,…. Končna enačba za razliko poti za oba žarka je potem enaka Δ = 2 d n /( n2 – sin2(α))1/2 + λ/2 . Kjer je λ/2 dodan zato , ker se žarek 1 odbije na gostejšem sredstvu in spremeni fazo. Iz zadnje enačbe izpeljemo sin2(α) = n2 – (2N-1)2 λ2 / (4d2) .

Zdaj pa po vrsti za N=1 , N=2, ….poskušamo rešiti enačbo. Ugotovimo, da je pri N=6 realna rešitev pri vpadnem kotu α6 = 65°, in za N=7 je rešitev α7 = 19°.

 

Dopplerjev pojav

3. Satelit, ki kroži nad Zemljo, oddaja radijske valove stalne frekvence. Ko je satelit v zenitu, sprejemnik na zemlji zazna valove frekvence ν1 = 600 MHz. Čez nekaj časa, ko satelit preleti zenit za kot φ = 30°, se sprejemna frekvenca zmanjša za Δν = 2,8 kHz. Kako visoko h nad površjem Zemlje je satelit?

Rešitev :

slika_sat

Satelit kroži okrog Zemlje s stalno hitrostjo v na višini h, tako da je centripetalni pospešek enak težnemu pospešku m ac = Fg sledi da je ac = g.

v2 / (R + h ) = g0 R2/ (R + h )2

iz zadnje enačbe izpeljemo hitrost

v = R (g0 / (R + h ))1/2 (E.1)

Ko je satelit v zenitu (nad opazovališčem ), je projekcija obhodne hitrosti v na veznico satelit-sprejemnik enaka nič. Sprejemnik tedaj zazna frekvenco oddajnika v satelitu. V legi pri kotu φ glede na zenit je projekcija hitrosti na veznico satelit-sprejemnik enaka v’ = v sin(ψ).

Z uporabo sinusnega izreka poiščemo zvezo med φ in ψ : R sin (¶ – ψ) = (R + h) sin(ψ) iz česar izpeljemo sin(ψ) = R sin(φ) /(R + h). Tako v enačbo za hitrost v’ vstavimo prejšnjo zvezo. Dobimo hitrost v’ = v R sin(φ) / (R + h). Ko vstavimo še zvezo za hitrost v dobimo

v’ = R2 sin(φ) g01/2 (R + h)-3/2

Sprejemnik na zemlji registrira frekvenco ν2, kot da bi se oddajnik na satelitu oddaljeval s hitrostjo v’, ki smo jo zgoraj izpeljali. Toraj velja ν2 = ν1 / (1 + v’ /c ) . Iz tega izraza izpeljemo hitrost v’ = c ( ν12 – 1) .

Od tod izračunamo višino satelita

h = R ( ( ν2 sin(φ) (go R )1/2 / (c (ν1 – ν2)))2/3 – 1 ) = 320 km.

4. Kroglica mase m = 3 g in naboja e1 = +5 μAs se približuje pritrjeni kroglici naboja e2 = +0,2 μAs. Hitrost kroglice na veliki oddaljenosti od pritrjene kroglice je v0 =36 km/h. Najmanj do kolikšne razdalje se kroglici približata?

Rešitev :

 

NAlogo najenostavneje rešimo z ohranitvijo kinetične in električne potencialne energije. Gibajoča kroglica ima na začetku kinetično energijo Wk1 = m v12 /2 in električno potencialno energijo Wep1 = 0, zaj je zelo daleč vstran. Kroglica ima na razdalji r od pritrjene kroglice kinetično energijo Wk2 = m v22 / 2 in električno potencialno energijo Wep2 = e1 e2 / (4 ¶ ε0 r ).

Sledi Wk1 + Wep1 = Wk2 + Wep2, ko vstavimo izraze dobimo enačbo za hitrost na razdalji r , v22 = v12 + e1 e2 /(2 ¶ ε0 m r) . Kroglica se bo na razdalji r0 popolnoma zaustavila, tako da je njena hitrost v2 = 0. Tako dobimo 0 = v12 – e1 e2 /(2 ¶ ε0 m r0 ) in iz tega izraza izpeljemo r0 = e1 e2 / (/(2 ¶ ε0 m v02) = 6 cm.

5. Kroglo s polmerom r1 = 2 cm in nabojem e1 = 2 μAs ter kroglo s polmerom r2 = 5 cm in nabojem e2 = 1 μAs povežemo s tanko prevodno nitko. Koliko naboja steče skozi nitko z ene krogle na drugo kroglo? Kolikšni sta končni gostoti nabojev na kroglah?

Rešitev:

krog_1

 

 

3. Ribič na čolnu vidi ribo pod kotom β=45° glede na navpičnico. Pod kolikšnim kotom α glede na navpičnico mora usmeriti harpuno, da zadene ribo? Lomni količnik vode je n=4/3.

Rešitev:

%d bloggers like this: